Binary TreesBinary Trees36

  1. 1Preorder Traversal of a Binary Tree using Recursion
  2. 2Preorder Traversal of a Binary Tree using Iteration
  3. 3Postorder Traversal of a Binary Tree Using Recursion
  4. 4Postorder Traversal of a Binary Tree using Iteration
  5. 5Level Order Traversal of a Binary Tree using Recursion
  6. 6Level Order Traversal of a Binary Tree using Iteration
  7. 7Reverse Level Order Traversal of a Binary Tree using Iteration
  8. 8Reverse Level Order Traversal of a Binary Tree using Recursion
  9. 9Find Height of a Binary Tree
  10. 10Find Diameter of a Binary Tree
  11. 11Find Mirror of a Binary Tree - Todo
  12. 12Inorder Traversal of a Binary Tree using Recursion
  13. 13Inorder Traversal of a Binary Tree using Iteration
  14. 14Left View of a Binary Tree
  15. 15Right View of a Binary Tree
  16. 16Top View of a Binary Tree
  17. 17Bottom View of a Binary Tree
  18. 18Zigzag Traversal of a Binary Tree
  19. 19Check if a Binary Tree is Balanced
  20. 20Diagonal Traversal of a Binary Tree
  21. 21Boundary Traversal of a Binary Tree
  22. 22Construct a Binary Tree from a String with Bracket Representation
  23. 23Convert a Binary Tree into a Doubly Linked List
  24. 24Convert a Binary Tree into a Sum Tree
  25. 25Find Minimum Swaps Required to Convert a Binary Tree into a BST
  26. 26Check if a Binary Tree is a Sum Tree
  27. 27Check if All Leaf Nodes are at the Same Level in a Binary Tree
  28. 28Lowest Common Ancestor (LCA) in a Binary Tree
  29. 29Solve the Tree Isomorphism Problem
  30. 30Check if a Binary Tree Contains Duplicate Subtrees of Size 2 or More
  31. 31Check if Two Binary Trees are Mirror Images
  32. 32Calculate the Sum of Nodes on the Longest Path from Root to Leaf in a Binary Tree
  33. 33Print All Paths in a Binary Tree with a Given Sum
  34. 34Find the Distance Between Two Nodes in a Binary Tree
  35. 35Find the kth Ancestor of a Node in a Binary Tree
  36. 36Find All Duplicate Subtrees in a Binary Tree

Lowest Common Ancestor in BST - Algorithm, Visualization, Code Examples



Algorithm Steps

  1. Given a binary search tree (BST) and two nodes, p and q.
  2. Start at the root of the BST.
  3. If both p and q are less than the current node, move to the left child.
  4. If both p and q are greater than the current node, move to the right child.
  5. Otherwise, the current node is the lowest common ancestor (LCA) of p and q.

Code

Python
Java
JavaScript
C
C++
C#
Kotlin
Swift
Go
Php
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

def lowestCommonAncestor(root, p, q):
    current = root
    while current:
        if p.val < current.val and q.val < current.val:
            current = current.left
        elif p.val > current.val and q.val > current.val:
            current = current.right
        else:
            return current
    return None

# Example usage:
if __name__ == '__main__':
    # Construct BST:
    #         6
    #        / \
    #       2   8
    #      / \  / \
    #     0  4 7   9
    root = TreeNode(6)
    root.left = TreeNode(2)
    root.right = TreeNode(8)
    root.left.left = TreeNode(0)
    root.left.right = TreeNode(4)
    root.right.left = TreeNode(7)
    root.right.right = TreeNode(9)
    p = root.left           # Node with value 2
    q = root.left.right     # Node with value 4
    lca = lowestCommonAncestor(root, p, q)
    print(lca.val)  # Output should be 2


Welcome to ProgramGuru

Sign up to start your journey with us

Support ProgramGuru.org

You can support this website with a contribution of your choice.

When making a contribution, mention your name, and programguru.org in the message. Your name shall be displayed in the sponsors list.

PayPal

UPI

PhonePe QR

MALLIKARJUNA M